

STRIDE Smart grid workshop

Lecture 3

Smart grid

Smart grid definition Smart meters Sensors Demand side management ICT Microgrids Artificial intelligence Blockchain Electric vehicles Energy storage systems

Project co-funded by the Europen Union (ERDF, IPA).

Smart grid definitions (1)

- What Makes a Grid "Smart?"
 - In short, the digital technology that allows for two-way communication between the utility (producer, supplier, aggregator etc.) and its customers, and the sensing along the transmission lines is what makes the grid smart.
 - Like the Internet, the Smart Grid will consist of controls, computers, automation, and new technologies and equipment working together, but in this case, these technologies will work
 with the electrical grid to respond digitally to our quickly changing electric demand.

Project co-funded by the Europen Union (ERDF, IPA).

Smart grid definitions (2)

- What does a Smart Grid do?
 - The Smart Grid represents an unprecedented opportunity to move the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health.
 - During the transition period, it will be critical to carry out testing, technology improvements, consumer education, development of standards and regulations, and information sharing between projects to ensure that the benefits we envision from the Smart Grid become a reality.

Smart grid definitions (3)

- The benefits associated with the Smart Grid include:
 - More efficient transmission of electricity
 - Quicker restoration of electricity after power disturbances
 - Reduced operations and management costs for utilities, and ultimately lower power costs for consumers
 - Reduced peak demand, which will also help lower electricity rates
 - Increased integration of large-scale renewable energy systems
 - Better integration of customer-owner power generation systems, including renewable energy systems, and
 - Improved security

The Smart grid in cartoons

https://www.smartgrid.gov/the_smart_grid/smart_grid.html

Project co-funded by the Europen Union (ERDF, IPA).

Smart grids

From traditional ... to the smart ...

8

9

World electricity final consumption by sector 1974 - 2018

- Energy needs higher than ever
- Electricity in final energy consumption – 24% - 31%

Industry 🗧 Transport 🧧 Residential 🍵 Commercial and public services 😑 Other

Project co-funded by the Europen Union (ERDF, IPA). Source: IEA, https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2018

The relation between economic growth and energy consumption

10

- The relation
 between Human
 Development
 Index (HDI) and
 electricity
 consumption
 - Life length and health
 - Education
 - Living standard

Project co-funded by the Europen Union (ERDF, IPA).

11

Source: https://www.cgdev.org/media/electricity-consumption-and-development-indicators

Smart Grid - Innovative solutions

- Two-way communication between consumer and provider
- Exchange of electricity and information
- Upgraded electricity network
- High flexibility
- Prosumers

Elements of Smart Grid

- Change implementation over years and decades
- Long-term planning
- Policies and guidelines

Smart Grid benefits and drivers

Top ranked motivating drivers by economies

Developed Economies (left); Developing Economies (right)

14

Smart Grid development drivers

Smart Grid Technologies

16

Smart meters and Advanced Metering Infrastructure (AMI) (1)

- 1970s start of smart metering development
 - Remote control and communication
 - Provide two-way communication
 - Measure electricity usage in real time
 - Can switch supply on/off

Type of meter		Advantages	Disadvantages
Electricity meter	Electro-mechanical	• Reliable measurement	 Manually reading Electricity consumed by current coil is also registered on the meter Creep phenomenon
	Electronic	 Measure more parameters besides energy consumption LCD/LED display Two-way communication Other functions of smart control 	 Complex communication infrastructure required Periodic calibration routines are required Security issues with unencrypted communication

TYPES OF ELECTRICITY, HEAT, AND GAS METERS

Smart meters and Advanced Metering Infrastructure (AMI) (2)

- Additional smart metering benefits:
 - Near real-time information on consumption
 - Energy usage management
 - Reducing costs and emissions
 - No more estimated billing
 - Easier supplier switching
 - Health monitoring

18

An older electromechanical Wh meter (left) and a modern smart meter (right)

 Croatian electricity meters provided by HEP Distribution System Operator (HEP DSO)

Project co-funded by the Europen Union (ERDF, IPA).

19

Source: https://hrvatska-danas.com/2021/04/11/akontacijska-struja-odlazi-u-povijest-iducih-10-godina-svi-bi-trebali-dobiti-pametna-brojila/

The development of smart energy meters and their functions

20

Project co-funded by the Europen Union (ERDF, IPA).

Source: https://ieeexplore.ieee.org/document/7365417

AMI infrastructure in a Smart Grid

21

AMI key applications

- Real time consumption data display
- More dynamic pricing schemes
- Net metering
- Faster services restoration
- Remote turn on and turn off

AMI key applications

Power quality monitoring

- Energy prepayment
- Detection of energy tampering and theft
- More efficient EV

use

23

Customer
 convenience

Project co-funded by the Europen Union (ERDF, IPA).

AMI cost-benefit analysis

	Costs	Benefits
	Costs AMI Metering Equipment and Communications Infrastructure Implementation • AMI Meters & Installation • AMI Communications Network Hardware & Installation IT Systems and Integration: MDAS,MDM, storage system, data integration platform, analytics software Program Management AMI Operational Costs – Metering Operations (Maintenance,	 Benefits Reduction in Meter Reading Costs Reduction in Field and Meter Services (Manual Disconnect/Reconnect of Meters, Manual Off-Cycle/Special Meter Reads) Theft/Tamper Detection and Reduction Efficiency Improvement in Billing and Customer Management Improved Capital Spend Efficiency Distribution System Management Asset Management Planning Avoided Meter Purchases Improved Outage Management Efficiency
•	field servicing, inventory management) – Communications Operations Consumer Education	

- Monitoring and measuring grid status
- Detecting mechanical failures in grids

Project co-funded by the Europen Union (ERDF, IPA).

- Demand response (DR) and energy efficiency (EE) programs
- Adapting the load to the available power
- Economic incentives
- Benefits for the environmentEnsuring grid stability

27

Typical load shape objectives that can be achieved through DSM

28

Project co-funded by the Europen Union (ERDF, IPA).

Source: https://ieeexplore.ieee.org/document/8038581

Types of Demand Response

- Implicit DR
 - DR pricing tariffs:
 - Flat rate tariff (FR)
 - Time of use pricing (TOU)
 - Real time pricing (RTP)
 - Critical peak pricing (CPP)
 - Critical peak rebate (CPR)
- Explicit DR

Information and Communication Technologies (ICT)

30

- SG can be divided into multiple integrated microgrids
- Part of the grid which can operate autonomously (off-grid)
- Consists of loads and power sources
 Switch for islanding

31

Conceptual scheme of a microgrid

AC microgrid structure

DC microgrid structure

Smart microgrid

NEIGHBOURHOOD EV FLEET

A neighbourhood car-sharing lot would serve as a giant collective battery, ready to supply the microgrid when needed to offset peak loads and reduce the need for redundant transmission cables. This in turn reduces system costs and keeps rates down for customers.

DOMESTIC POWER PLANT

When power needs are low—for example during the day when nobody is home—rooftop solar panels could top up in-home battery packs, such as those made by Tesla Motors. A microgrid could access those packs as needed, sharing the power with neighbours during an outage.

THE SMART SWITCH

There's no "central command centre" in a microgrid. Instead, intelligent and semiautonomous switching components would monitor an area's immediate needs and available resources, and move power when and where it is needed.

- The science and engineering of building intelligent machines
 - Ways for machines to achieve AI:
 - Machine Learning (ML):
 - Deep Learning, and
 - Reinforcement Learning.
 - Rule-Based Programming
 - Artificial Neural Networks (ANN) three layers

36

Architecture of an ANN used to predict future loads

37

Blockchain

- Decentralised technology
- Participants create, maintain and store chains of information blocks
- Every peer has a copy of the ledger
- Smart contracts agreed upon in advance and executed when the terms are met
- Peer to peer (P2P) energy trading

Depiction of Blockchain and the Smart Contract principle

39

Electric vehicles

- Transport sector 1/4 of Europe's GHG emissions
- Noise pollution high
- Internal Combustion Engines (ICEs) are highly inefficient (18% - 25%)

40

Conventional vehicle

Conventional vehicles use an internal combustion engine (petrol/diesel) to provide vehicle power.

A conventional vehicle with an ICE, its advantages and disadvantages

Source: <u>https://www.eea.europa.eu/publications/electric-vehicles-in-europe/at_download/file</u>

FOSSIL FUEL

HIGHER ENGINE NOISE Project co-funded by the Europen Union (ERDF, IPA).

Main parts of an electric or hybrid vehicle

42

Types of EVs

- 3 main types
- 2 additional types

43

Project co-funded by the Europen Union (ERDF, IPA).

Source: https://www.hpi.co.uk/content/electric-cars-the-electric-era/electric-cars-different-types-electric-cars/

A battery electric vehicle (BEV), its advantages and disadvantages

Source: https://www.eea.europa.eu/publications/electric-vehicles-ineurope/at download/file

Battery electric vehicle

Battery electric vehicles are powered by an electric motor and battery with plug-in charging.

ADVANTAGES

HOME/WORKPLACE

RECHARGE

EMISSIONS

LOW ENGINE ZERO EXHAUST NOISE

DISADVANTAGES

SHORT DRIVING

44

A hybrid electric vehicle (HEV), its advantages and disadvantages

Source: <u>https://www.eea.europa.eu/publications/electric-vehicles-in-</u> europe/at_download/file

Hybrid electric vehicle

Hybrid electric vehicles combine a conventional (petrol/diesel) engine and a small electric motor/battery charged via regenerative braking or the engine.

ADVANTAGES

DISADVANTAGES

45

Transmission

Parallel HEV Series-parallel HEV Image: series of the se

46

Plug-in hybrid electric vehicle, its advantages and disadvantages

Source: <u>https://www.eea.europa.eu/publications/electric-vehicles-in-europe/at_download/file</u>

Plug-in hybrid electric vehicle

Plug-in hybrid electric vehicles have a conventional (petrol/diesel) engine complemented with an electric motor/battery with plug-in charging.

ADVANTAGES

DISADVANTAGES

47

Range-extended electric vehicle (REEV), its advantages and disadvantages

Source: https://www.eea.europa.eu/publications/electric-vehicles-ineurope/at_download/file_

Range-extended electric vehicle

Range-extended electric vehicles are powered by an electric motor and plug-in battery, with an auxiliary combustion engine used only to supplement battery charging.

ADVANTAGES

DISADVANTAGES

48

Fuel cell electric vehicle (FCEV), its advantages and disadvantages

Source: <u>https://www.eea.europa.eu/publications/electric-vehicles-in-</u> europe/at_download/file Fuel cell electric vehicle

Fuel cell electric vehicles use a fuel cell to create on-board electricity, generally using compressed hydrogen and oxygen from the air.

49

How are electric vehicles charged?

Project co-funded by the Europen Union (ERDF, IPA).

50

Source: https://www.emobilitysimplified.com/2020/03/how-to-charge-electric-vehicle-plug-in-battery-swap.html

EV charging modes

- 4 modes
- different speeds and uses

Project co-funded by the Europen Union (ERDF, IPA).

Charging times for 100km range provision

Project co-funded by the Europen Union (ERDF, IPA).

 Estimated life-cycle CO2 emissions for different vehicle and fuel types, based on an average midclass vehicle that traverses 220.000km in its lifetime

Source: https://www.eea.europa.eu/publications/electric-vehicles-ineurope/at_download/file

Project co-funded by the Europen Union (ERDF, IPA).

EVs and Smart Grids

- Indirectly-controlled charging
- Grid-to-Vehicle (G2V) charging
- Smart charging:
 - Unidirectional controlled charging (V1G) a type of G2V
 - Vehicle-to-Grid (V2G)
 - Vehicle-to-Home (V2H)
 - Vehicle-to-Vehicle (V2V)

Price based indirectly controlled charging schemes

STRIDE

Smart charging forms

V2G = Vehicle-to-grid Smart grid controls vehicle charging and returns electricity to the grid

Source: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA EV smart charging 2019 summary.pdf?la=en&hash=8A4B9AB5BAB3F2341B366271DCA6FF7EE802AED4

56

Grid-to-Vehicle (G2V) charging

Project co-funded by the Europen Union (ERDF, IPA).

57

Source: https://news.energysage.com/vehicle-to-grid-charging-what-you-need-to-know/

Vehicle-to-Grid (V2G) charging

controlled bi-directional electricity flow
 peak load management

Source: https://www.cleantech.com/ev-charging-software-and-grid-services/

Project co-funded by the Europen Union (ERDF, IPA).

59

Short-term impact of EV charging

Short term impact of EV charging on the selected KPIs in a solar based system

Project co-funded by the Europen Union (ERDF, IPA). /media/Files/IRENA/Agency/Publication/2019/May/IRENA EV smart charging 2019 summary.pdf?la=en&hash=8A4B9AB5BAB3F2341B366271DCA6FF7EE802AED4

Source: https://www.irena.org/-

Long-term impact of EV charging

Project co-funded by the Europen Union (ERDF, IPA).

60

-Source: https://www.irena.org/ media/Files/IRENA/Agency/Publication/2019/May/IRENA_EV_smart_charging_2019_summary.pdf?la=en&hash=8A4B9AB5BAB3F2341B366271DCA6FF7E

Different scenario impacts on the power grid depending on EV charging technologies

	\bigcirc	(C)	àb.		
Study	Scenario	Uncontrolled charging	Smart charging		
IRENA	50% penetration in an isolated system with 27% solar share	19% increase in peak load 0.5% solar curtailment	† 5% increase in peak load (V2G) Down to 0% curtailment	9%	
RMI, 2016	23% penetration US (California, Hawaii, Minnesota, New York, Texas)	† 11% increase in peak load	† 1.3% increase in peak load (V1G)	11%	
Taljegard, 2017	100% penetration Denmark, Germany, Norway & Sweden	† 20% increase in peak load	↓7% decrease in peak load (V2G)	20% -7%	
McKenzie, 2016	50% penetration in Island of Oahu, Hawaii, US 23% VRE share	10-23% VRE curtailment without EVs	8-13% VRE curtailment with smart charging EVs	23%	
Chen and Wu, 2018	1 MILLION EVs in Guanzhou region, China	15% increase in peak load	43-50% reduction in valley/peak difference		
 Peak load with uncontrolled charging Peak load with smart charging Curtailment in no EVs scenario Curtailment with smart charging EVs 					

61

Source: https://www.irena.org/-

Project co-funded by the Europen Union (ERDF, IPA). /media/Files/IRENA/Agency/Publication/2019/May/IRENA EV smart charging 2019 summary.pdf?la=en&hash=8A4B9AB5BAB3F2341B366271DCA6FF7EE802AED4

Energy storage systems

- Electromechanical storage technologies
 - Pumped-storage hydropower plants (PSH),
 - Compressed air energy storage (CAES) and
 - Flywheel energy storage
- Electrochemical storage technologies
 - Batteries and
 - Hydrogen fuel cells
- Electrostatic storages
 - Supercapacitors
- Electromagnetic storages
 - Superconducting magnetic energy storage (SMES)

Classification of the main energy storage systems based on their application

- Ultracapacitor

- Flywheel
- Hybrid systems
- Thermal energy storage
- Ultracapacitor

- Battery energy storage systems (BESS)
- Compressed air energy storage (CAES)
- Flywheel energy storage system (FESS)
- Pumped hydroelectric
- Superconducting magnetic energy storage (SMES)
- Ultracapacitor

Project co-funded by the Europen Union (ERDF, IPA).

63

Source: https://www.sciencedirect.com/book/9780128042083/distributed-generation-systems

Energy storage technologies compared by their power, energy density, response time and efficiency

Technology	Power	Energy density	Response time	Efficiency
Pumped hydro	100 MW-2 GW	400 MWh–20 GWh	12 min	70–80%
CAES	110 MW-290 MW	1.16 GWh–3 GWh	12 min	90%
BESS	100 W-100 MW	1 kWh–200 MWh	Seconds	60-80%
Flywheels	5 kW–90 MW	5 kWh–200 kWh	12 min	80-95%
SMES	170 kW–100 MW	110 Wh–27 kWh	Milliseconds	95%
Super	<1 MW	1 Wh–1 kWh	Milliseconds	>95%
capacitors				

Pumped-storage hydropower plants

- Potential energy of water
- Largest capacity storage in today's power system

Compressed Air Energy Storage (CAES)

66

Flywheel energy storage

- Simple mechanical storage
- Heavy rotating disk stores angular momentum in a vacuum

Project co-funded by the Europen Union (ERDF, IPA).

Electrochemical batteries

- Two electrodes submerged into an electrolyte solution
- Non-rechargeable or rechargeable

Basic parts of a battery (1)

- The positive electrode ≠ cathode
- The negative electrode ≠ anode
- The electrolyte
 - The external circuit

69

Project co-funded by the Europen Union (ERDF, IPA). Source: https://www.researchgate.net/figure/Schematic-of-a-lithium-ion-battery-Each-lithium-ion-battery-consists-of-an-anode-and-a_fig1_233107188

Basic parts of a battery (2)

- Cell parallel/ Module series Pack
- Self-discharge rate
- Solution 3rd type of batteries – reserve batteries
- Battery cells battery modules battery

packs

У

- Alkaline (zinc-manganese dioxide)
- Lead acid
- Nickel cadmium (Ni-Cd)
- Lithium (lithium-copper oxide) Li-CuO
- Nickel-metal hydride (NiMH)
- Lithium (lithium-iron disulfide) LiFe S2
- Lithium-ion (Li-lon)

- Lithium-ion polymer
- Nickel oxyhydroxide
- Zinc-Chloride
- Lithium (lithium-manganese dioxide) LiMn O2
- Zinc-Air
- Silver-oxide (Silver-Zinc)

Hydrogen fuel cells

- Hydrogen or natural gas fuel cells
- Hydrogen + oxygen generate DC current

Project co-funded by the Europen Union (ERDF, IPA).

Supercapacitors

Capacitor discharged Capacitor charged Electrod Collector Collector Electrode Electrod Electrolyte Solvated ions Inner Helmholtz plane Separator (polarized solvent molecules) Mirror image of charge distribution Random distribution of ions of ions in opposite polarity

 High power output

- High cost
- High selfdischarge rate

Project co-funded by the Europen Union (ERDF, IPA).

73

 Key storage system characteristics with particular applications in the energy system

Source: <u>https://www.iea.org/reports/technology-</u> roadmap-energy-storage

Project co-funded by the Europen Union (ERDF, IPA).

74

Application	Output (electricity, thermal)	Size (MW)	Discharge duration	Cycles (typical)	Response time
Seasonal storage	e,t	500 to 2 000	Days to months	1 to 5 per year	day
Arbitrage	е	100 to 2 000	8 hours to 24 hours	0.25 to 1 per day	>1 hour
requency regulation	е	1 to 2 000	1 minute to 15 minutes	20 to 40 per day	1min
oad following	e,t	1 to 2 000	15 minutes to 1 day	1 to 29 per day	<15min
/oltage support	е	1 to 40	1 second to 1 minute	10 to 100 per day	millisecond to second
Black start	е	0.1 to 400	1 hour to 4 hours	< 1 per year	<1 hour
Transmission and Distribution (T&D) congestion relief	e,t	10 to 500	2 hours to 4 hours	0.14 to 1.25 per day	>1hour
୮&D infrastructure nvestment deferral	e,t	1 to 500	2 hours to 5 hours	0.75 to 1.25 per day	>1hour
Demand shifting and peak reduction	e,t	0.001 to 1	Minutes to hours	1 to 29 per day	<15 min
Off-grid	e,t	0.001 to 0.01	3 hours to 5 hours	0.75 to 1.5 per day	<1hour
/ariable supply resource ntegration	e,t	1 to 400	1 minute to hours	0.5 to 2 per day	<15 min
Waste heat utilisation	t	1 to 10	1 hour to 1 day	1 to 20 per day	< 10 min
Combined heat and power	t	1 to 5	Minutes to hours	1 to 10 per day	< 15 min
Spinning reserve	е	10 to 2 000	15 minutes to 2 hours	0.5 to 2 per day	<15 min
Non-spinning reserve	е	10 to 2 000	15 minutes to 2 hours	0.5 to 2 per day	<15 min

Hype curve - Energy storage technologies' maturity levels

75