

New Horizons for Nuclear Energy:

Opportunities and Challenges

Michel Berthélemy Nuclear Strategic Policy Advisor

The Nuclear Energy Agency

34 countries seeking excellence in nuclear safety, technology, and policy

- The premier international platform for cooperation in nuclear technology, policy, regulation, research, and education
- 34 member countries plus strategic partners (e.g., China and India)
- 8 standing committees and more than 80 working parties and expert groups
- 20 joint undertakings
- Global relationships with industry and universities

NEA countries operate approximately 80% of the world's installed nuclear capacity

Strategic Policy Context

Strategic Energy Policy Context: *The Energy Trilemma*

There are no magic solutions to the Energy Trilemma.

National conditions, available natural resources and policy preferences will continue to shape energy policy decisions.

2022 NEA Publication: Global installed nuclear capacity needs to triple by 2050 for Net Zero

Cumulative emissions avoided

IPCC 1.5°C scenarios (2050 average) = 1 160 GW nuclear capacity (based on the average of IPCC 1.5°C scenarios)

Conservative projections

Small modular reactors (2035 market outlook) Large-scale new builds (under construction) Long-term operation (planned)

Ambitious projections

- Small modular reactors (post-2035 market extrapolation)
- Large-scale new builds (planned)
- Long-term operation (to 80 years)

[https://www.oecd-nea.org/jcms/pl_69396/meeting-climate-change-targets-the-role-of-nuclear-energy](about:blank)

COP28 Ministerial Declaration on Tripling Nuclear Energy by 2050

- 25 nations committing to tripling nuclear energy by 2050
- Referenced NEA analysis that demonstrates the need to triple nuclear energy and a pathway to achieve this target
- Emphasis on the role of Multinational Development Banks (MDBs) and International Developmental Finance Institutions (IFIs)

The role of nuclear in future energy systems

The Full Potential of Nuclear Energy to Contribute to Emissions Reductions

Long Term Operation

Large Generation III Reactors

Small Modular Reactors

Non-Electrical applications

Complementary nuclear technologies and applications

Future Energy Systems & the Role of Nuclear Energy

There is **no silver bullet**, all available clean technologies have to contribute to decarbonization

+ H²

Electricity and cleanhydrogen is the new energy paradigm

As a **reliable source of clean electricity and high heat**, nuclear is a key pillar of future energy systems

Credit: US Department of Energy, Idaho National Lab

Even in very high renewable scenarios, there are hard to abate sectors where SMRs can play an important role

Coal replacement for on-grid power

- More than 2 TWe of coal power plants in operation that will have to be phasedout to meet Net Zero objectives
- Larger SMRs (200-300 MWe) are designed primarily for on-grid power generation and is well-suited to coal power plant replacement

- SMRs could provide a non-emitting alternative for marine merchant shipping propulsion
	- SMRs for marine merchant shipping could yield significant emissions reductions as shipping remains a very hard-to-abate industrial sector

Diesel replacement for off-grid mining

- Smaller SMRs could create an alternative to diesel generation in remote communities and at resource extraction sites
- SMRs could be used to provide power as well as heat for various purposes such as district heating or mine-shaft heating

Heat & hydrogen

- Fossil cogeneration replacement for industries: High-temperature SMRs to unlock non-emitting alternatives for industry
- Fossil replacement for district heating : Most district heating network rely on fossil fuels and lack scalable decarbonization options
- Hydrogen and synthetic fuels: SMRs localization near industrial demand hubs can unlock large-scale production

SMRs Are Expected in a Range of Sizes and Temperatures

POWER

SMRs vary in size from 1 to 300 megawatts electric

TECHNOLOGY

- Some SMRs are based on Generation III and Light Water reactor technologies
- Other are based on Generation IV and advanced reactor technologies

TEMPERATURE

• From 285°C to 850°C in the near-term and up to or over 1,000°C in the future

FUEL CYCLE

- Some SMRs are based on a once-through fuel cycle
- Other seek to close the fuel cycle by recycling waste streams to produce new useful fuel and minimize waste streams requiring long-term management and disposal

 \bullet Water-Cooled \bullet Gas-Cooled \bullet Fast Spectrum \bullet Molten Salt \bullet Micro

Tracking Deployment Progress: *The NEA SMR Dashboard*

Volume I: [NEA SMR Dashboard Volume I, NEA, 2023](https://www.oecd-nea.org/jcms/pl_78743/the-nea-small-modular-reactor-dashboard?details=true) Volume II: [NEA SMR Dashboard Volume II, NEA, 2023](https://oecd-nea.org/jcms/pl_83555/the-nea-small-modular-reactor-dashboard-volume-ii)

SMR Sites around the World

SMR sites around the world

X-energy

 26 $31 \quad 10$

 $30²$

Construction

 14

28

 37 17

 33

ą٩

Nuclear Reimagined

Policy frameworks to support nuclear deployment

Nuclear Energy Faces Many Challenges

System Costs = Plant-level Costs + Grid-level Costs

© 2024 OECD/NEA www.oecd-nea.org 18

As the share of variable renewables increases, system costs grow quickly

System Costs Breakdown of Grid-level Costs

System costs are significant and increase with VRE generation share Profile costs are the dominant component

System costs depend on carbon constraints and shares of variable renewables

The cost of electricity increases with the stringency of the carbon constraint, especially in scenarios where only variable renewables are deployed.

Thank you

DER ROLL

 AnA