

New Horizons for Nuclear Energy:

Opportunities and Challenges

Michel Berthélemy Nuclear Strategic Policy Advisor

3rd International Nuclear Conference, Sofia, 25 January 2024

The Nuclear Energy Agency

34 countries seeking excellence in nuclear safety, technology, and policy

- The premier international platform for cooperation in nuclear technology, policy, regulation, research, and education
- 34 member countries plus strategic partners (e.g., China and India)
- 8 standing committees and more than 80 working parties and expert groups
- 20 joint undertakings
- Global relationships with industry and universities

NEA countries operate approximately 80% of the world's installed nuclear capacity

Strategic Policy Context

Strategic Energy Policy Context: *The Energy Trilemma*

There are <u>no</u> magic solutions to the Energy Trilemma.

National conditions, available natural resources and policy preferences will continue to shape energy policy decisions.

2022 NEA Publication: Global installed nuclear capacity needs to triple by 2050 for Net Zero

Cumulative emissions avoided

IPCC 1.5°C scenarios (2050 average) = 1 160 GW nuclear capacity (based on the average of IPCC 1.5°C scenarios)

Conservative projections

Small modular reactors (2035 market outlook)
 Large-scale new builds (under construction)
 Long-term operation (planned)

Ambitious projections

- Small modular reactors (post-2035 market extrapolation)
- Large-scale new builds (planned)
- Long-term operation (to 80 years)

https://www.oecd-nea.org/jcms/pl 69396/meeting-climate-change-targets-the-role-of-nuclear-energy

COP28 Ministerial Declaration on Tripling Nuclear Energy by 2050

- 25 nations committing to tripling nuclear energy by 2050
- Referenced NEA analysis that demonstrates the need to triple nuclear energy and a pathway to achieve this target
- Emphasis on the role of Multinational Development Banks (MDBs) and International Developmental Finance Institutions (IFIs)

The role of nuclear in future energy systems

The Full Potential of Nuclear Energy to Contribute to Emissions Reductions

Long Term Operation Large Generation III Reactors

Small Modular Reactors Non-Electrical applications

Complementary nuclear technologies and applications

Future Energy Systems & the Role of Nuclear Energy

There is **no silver bullet**, all available clean technologies have to contribute to decarbonization

 \checkmark + H₂

Electricity and cleanhydrogen is the new energy paradigm

As a reliable source of clean electricity and high heat, nuclear is a key pillar of future energy systems

Credit: US Department of Energy, Idaho National Lab

Even in very high renewable scenarios, there are hard to abate sectors where SMRs can play an important role

Coal replacement for on-grid power

- More than 2 TWe of coal power plants in operation that will have to be phasedout to meet Net Zero objectives
- Larger SMRs (200-300 MWe) are designed primarily for on-grid power generation and is well-suited to coal power plant replacement

- SMRs could provide a non-emitting
 alternative for marine merchant
 shipping propulsion
 SMRs for marine merchant shipping
 - SMRs for marine merchant shipping could yield significant emissions reductions as shipping remains a very hard-to-abate industrial sector

Diesel replacement for off-grid mining

- Smaller SMRs could create an alternative to diesel generation in remote communities and at resource extraction sites
- SMRs could be used to provide power as well as heat for various purposes such as district heating or mine-shaft heating

Heat & · hydrogen

- <u>Fossil cogeneration replacement for</u>
 <u>industries:</u> High-temperature SMRs to unlock non-emitting alternatives for industry
- <u>Fossil replacement for district heating</u> : Most district heating network rely on fossil fuels and lack scalable decarbonization options
- <u>Hydrogen and synthetic fuels</u>: SMRs localization near industrial demand hubs can unlock large-scale production

SMRs Are Expected in a Range of Sizes and Temperatures

POWER

SMRs vary in size from 1 to 300 megawatts electric

TECHNOLOGY

- Some SMRs are based on Generation III and Light Water reactor technologies
- Other are based on Generation IV and advanced reactor technologies

TEMPERATURE

From 285°C to 850°C in the near-term and up to or over 1,000°C in the future

FUEL CYCLE

- Some SMRs are based on a once-through fuel cycle
- Other seek to close the fuel cycle by recycling waste streams to produce new useful fuel and minimize waste streams requiring long-term management and disposal

Water-Cooled
 Gas-Cooled
 Fast Spectrum
 Molten Salt
 Micro

Tracking Deployment Progress: *The NEA SMR Dashboard*

Volume I: <u>NEA SMR Dashboard Volume I, NEA, 2023</u> Volume II: <u>NEA SMR Dashboard Volume II, NEA, 2023</u>

SMR Sites around the World

SMR sites around the world

				LEGEND			
			•	•			
		Agree /N	ements/MOUs Shor	owner has Site Owner tlisted the has Selected chnology the Technology		2-1 C	
	40 18			251	1		
						4	• • 6 12
		30	20			12	8 12
		21 11	6 1	19 18 1		12 12	26 31
		21	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5	26
		1§4 23 3	38	9			31 10
		20	18 2	20 26			
			7 6				
1	ARC-100	ARC Clean Technology			22	BANR SMR	BWX Technologies
-	ARC-100 CAREM	ARC Clean Technology				BANR SMR Project Pele	BWX Technologies BWX Technologies
1 2 3		ARC Clean Technology CNEA CGN			23	Project Pele	BWX Technologies BWX Technologies CVŘ
2	CAREM	CNEA			23 24	Project Pele Energy Well	BWX Technologies CVŘ
2 3	CAREM ACPR50S	CNEA CGN			23 24 25	Project Pele	BWX Technologies
2 3 4	CAREM ACPR50S ACP100	CNEA CGN CNNC and NPIC			23 24 25 26	Project Pele Energy Well DF300	BWX Technologies CVŘ Dual Fluid Energy
2 3 4 5	CAREM ACPR50S ACP100 NUWARD	CNEA CGN CNNC and NPIC nuward EDF GROUP			23 24 25 26 27	Project Pele Energy Well DF300 SMR-160	BWX Technologies CVŘ Dual Fluid Energy Holtec International
2 3 4 5 6	CAREM ACPR50S ACP100 NUWARD BWRX-300	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene			23 24 25 26 27 28	Project Pele Energy Well DF300 SMR-160 GTHTR300	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA
2 3 4 5 6 7	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power			23 24 25 26 27 28 29	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA
2 3 4 5 6 7 8 9	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors			23 24 25 26 27 28 29 30	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI
2 3 4 5 6 7 8 9 10	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy			23 24 25 26 27 28 29 30 31	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy
2 3 4 5 6 7 8 9 10 11	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power			23 24 25 26 27 28 29 30 30 31 32	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy
2 3 4 5 6 7 8 9 10 11 12	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO		2	23 24 25 26 27 28 29 30 31 32 33	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>new</i> cleo
2 3 4 5 6 7 8 9 10 11 12 13	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd.		2	23 24 25 26 27 28 29 30 31 32 33 34	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>new</i> cleo NIKIET
2 3 4 5 6 7 8 9 10 11 12 13 14	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom		2	23 24 25 26 27 28 29 30 31 32 33 34 35	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>new</i> cleo NIKIET Radiant Rosatom
2 3 4 5 6 7 8 9 10 11 12 13 14 15	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S RITM-200N	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom		2	23 24 25 26 27 28 29 30 31 32 33 34 35 36	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos RITM-200M	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>new</i> cleo NIKIET Radiant Rosatom
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S RITM-200N RITM-200S	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom Rosatom		2	23 24 25 26 27 28 29 30 31 31 33 33 34 35 36 37	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos RITM-200M CMSR HAPPY200	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA JImmy Energy KAERI Last Energy <i>newcleo</i> NIKIET Radiant Rosatom Seaborg Technologie SPIC
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S RITM-200N RITM-200S Natrium	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom Rosatom TerraPower		2	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos RITM-200M CMSR HAPPY200 IMSR	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>newcleo</i> NIKIET Radiant Rosatom Seaborg Technologie SPIC Terrestrial Energy
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S RITM-200N RITM-200S Natrium HTR-PM	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom Rosatom Rosatom TerraPower INET		2	23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos RITM-200M CMSR HAPPY200 IMSR TMSR-500	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>newcleo</i> NIKIET Radiant Rosatom Seaborg Technologies SPIC Terrestrial Energy ThorCon International
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	CAREM ACPR50S ACP100 NUWARD BWRX-300 Hermes SEALER-55 SSR-Wasteburner VOYGR Aurora Rolls-Royce SMR KLT-40S RITM-200N RITM-200N RITM-200S Natrium HTR-PM MMR	CNEA CGN CNNC and NPIC nuward EDF GROUP GE-Hitachi Nuclear Ene Kairos Power Leadcold Reactors Moltex Energy NuScale Power OKLO Rolls-Royce SMR Ltd. Rosatom Rosatom Rosatom TerraPower INET Ultra Safe Nuclear	ergy	2	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Project Pele Energy Well DF300 SMR-160 GTHTR300 HTTR Jimmy SMART PWR-20 LFR AS 200 BREST-OD-300 Kaleidos RITM-200M CMSR HAPPY200 IMSR	BWX Technologies CVŘ Dual Fluid Energy Holtec International JAEA JAEA Jimmy Energy KAERI Last Energy <i>new</i> cleo NIKIET Radiant Rosatom Seaborg Technologie SPIC Terrestrial Energy ThorCon Internationa Toshiba Energy System

	27 GIHIKSUU	JAEA
	28 HTTR	JAEA
	29 Jimmy	Jimmy Energy
	30 SMART	KAERI
	31 PWR-20	Last Energy
	32 LFR AS 200	newcleo
2	33 BREST-OD-300	NIKIET
-	34 Kaleidos	Radiant
	35 RITM-200M	Rosatom
	36 CMSR	Seaborg Technologies
	37 HAPPY200	SPIC
	38 IMSR	Terrestrial Energy
	39 TMSR-500	ThorCon International
	40 4S	Toshiba Energy Systems & Solutions Corporation
	41 Westinghouse LFF	Westinghouse Electric Company
	42 TEPLATOR	ZČU and CIIRC CTU
	-	

Nuclear Reimagined

Policy frameworks to support nuclear deployment

Nuclear Energy Faces Many Challenges

Systems thinking	A systems approach is required to understand the full costs of electricity provision, and to ensure that markets value desired outcomes: low carbon baseload, dispatchability, and reliability.				
	The nuclear sector must move quickly to demonstrate and deploy near-term and medium-term innovations including advanced and small modular reactors, as well as nuclear hybrid energy systems to produce heat, electricity, synthetic fuels and meet other needs.				
Speed & Scale	Rapid build-out of new nuclear power is possible, but requires a clear vision and plan.				
	Historical and recent experience shows that under the right policy frameworks and with a robust programmatic approach, nuclear power can achieve rapid delivery times.				
Building and maintaining	Building trust is central to building public confidence and requires sustained investments in open and transparent engagement.				
public trust	A common mistake is to assume that public confidence is primarily a communication issue. Science communication is essential but does not substitute for meaningful two-way engagement.				
Understanding the role of	Governments have a role to play in all capital intensive infrastructure projects – including nuclear energy projects.				
Governments	The role of governments can include direct funding, but also enabling policy frameworks that allow an efficient allocation of risks to allow nuclear energy projects to compete on their merits on equal footing with other non-emitting energy projects.				

System Costs = Plant-level Costs + Grid-level Costs

As the share of variable renewables increases, system costs grow quickly

System Costs

Breakdown of Grid-level Costs

System costs are significant and increase with VRE generation share Profile costs are the dominant component

www.oecd-nea.org

System costs depend on carbon constraints and shares of variable renewables

The cost of electricity increases with the stringency of the carbon constraint, especially in scenarios where only variable renewables are deployed.

Thank you

In