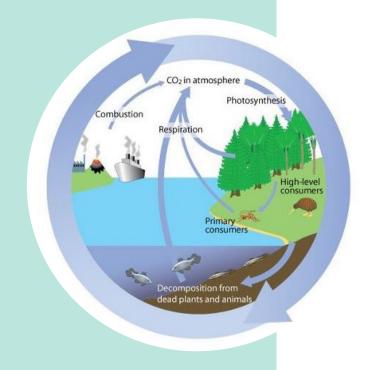


THERMO-CHEMICAL CONVERSION OF BIOMASS - HEAT AND POWER

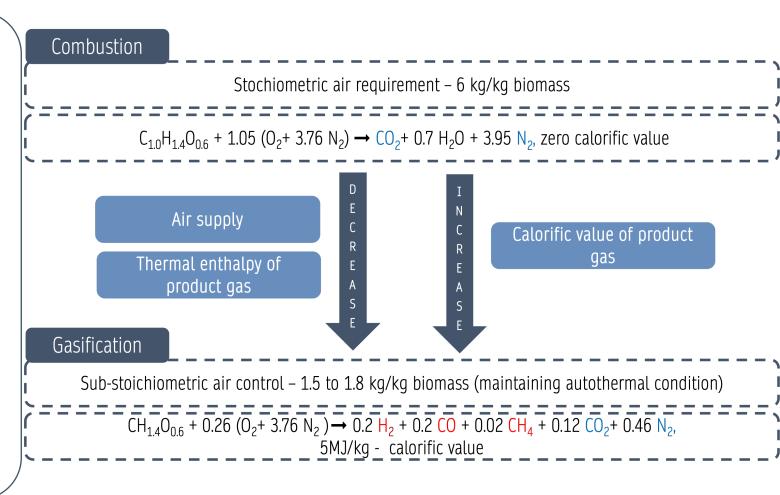
A CARBON NEGATIVE APPROACH



Prof Dasappa S Chair, Interdisciplinary Centre for Energy Research Professor, Centre for Sustainable Technologies Indian Institute of Science Email: dasappa@iisc.ac.in Contact No: +91 80 23600536

PHOTOS OF VISIT

NATURAL CARBON SEQUESTRATION

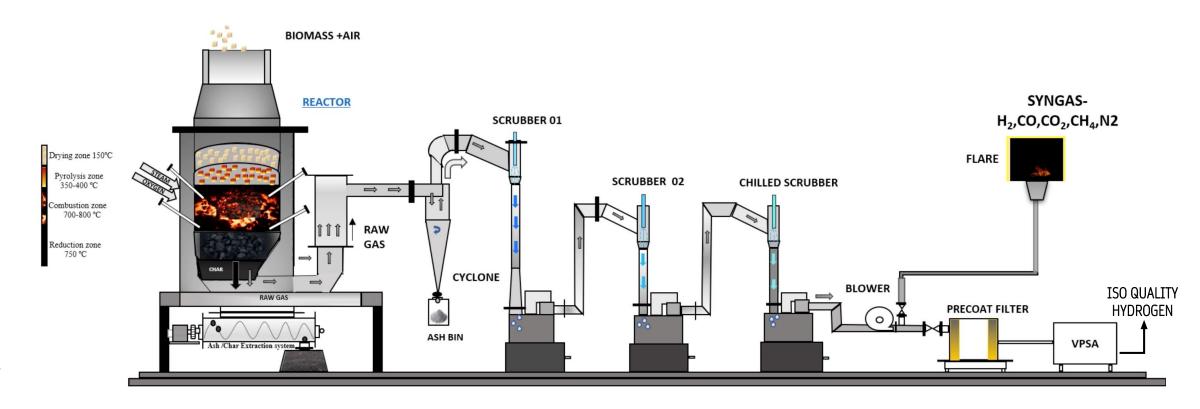

- $C_{1.0}H_{1.4}O_{0.6}$ 52% by mass is embedded in Carbon
- Natural sequestration 1.9 kg CO₂e

Rotation (years)	1	10	20	40	50	60	80	90	100
GWP _{bio} factor	0	0.04	0.08	0.16	0.21	0.25	0.34	0.39	0.43

 \bullet If agro residue is targeted as biomass source, the $\mathsf{GWP}_{\mathsf{bio}}$ will be 0

PHILOSOPHY OF THERMOCHEMICAL CONVERSION

- Combustion uses 6kg of air for 1 kg of biomass (Stochiometric value) to generate a mixture of gas containing CO2, H2O and N2.
- The gas mix has high thermal enthalpy but zero calorific value.
- On reducing stoichiometric air, process continues in an autothermal manner, but the thermal enthalpy of product gas starts reducing and calorific value starts increasing.
- Sub-stochiometric, autothermal, thermochemical conversion, is termed as gasification.


GASIFICATION THERMOCHEMISTRY

Air gasification

- $CH_{1.4}O_{0.6} + 0.26 (O_2 + 3.76 N_2) \rightarrow 0.2 H_2 + 0.2 CO + 0.02 CH_4 + 0.12 CO_2 + 0.46 N_2$
- Producer gas 20% H_2 + 20% CO + 2% CH_4 + 12% CO_2 + 46% N_2 :: ~ 05 MJ/kg
- 40 50g of H₂/kg of biomass
- 2.75 kg-producer gas/kg-biomass

SCHEMATIC DIAGRAM- IISC PATENTED GASIFICATION TECHNOLOGY

Open top downdraft fixed-bed gasification system

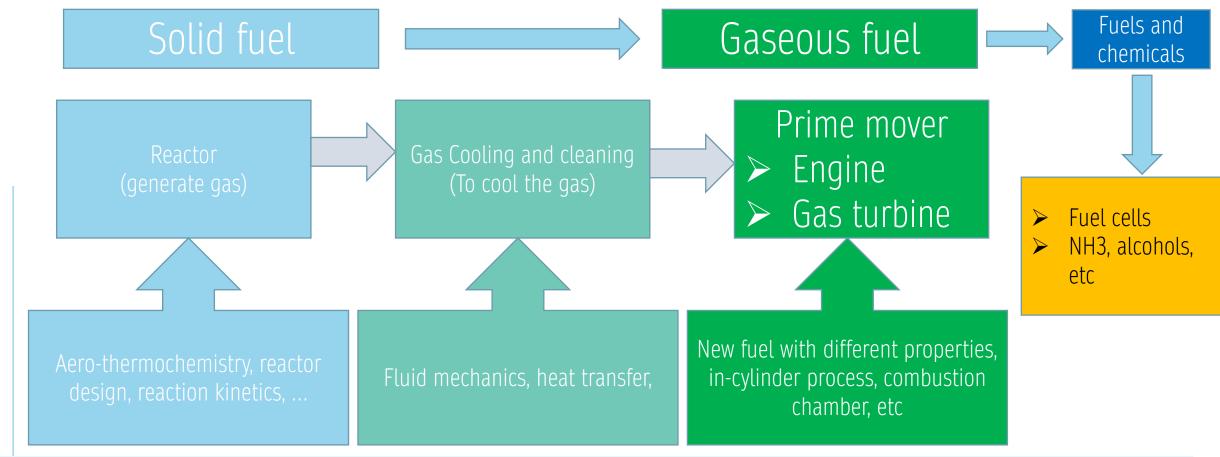
GASIFICATION TECHNOLOGY-FUEL AGNOSTIC

Corncob 200 kg/m³

Coffee husk pellet 663 kg/m³

Wood chip 400 kg/m³

Coconut shell 1000 ka/m³



Mulberry pellet 570 kg/m³

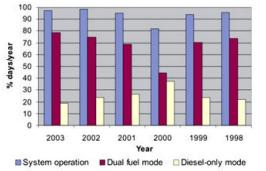
Bamboo 1156 kg/m³

SCIENTIFIC ASPECTS OF THE TECHNOLOGY

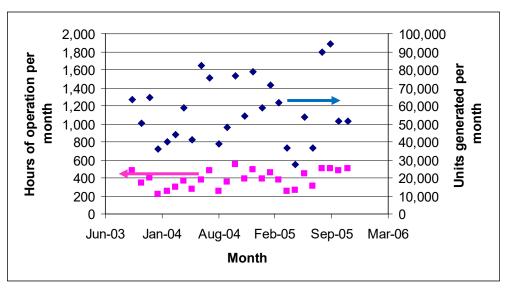
- Interdisciplinary science overlapping the research component
- Product development engineering the product which involves material, life, etc and finally economical

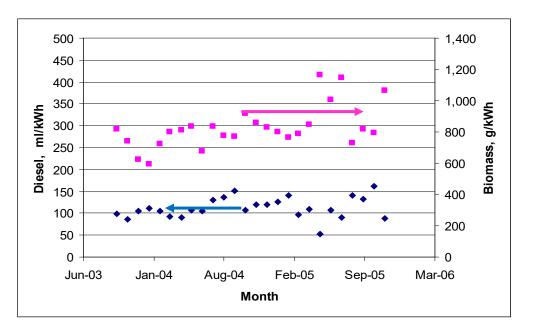
AN INTERESTING JOURNEY FOR SUSTAINABLE ENERGY IN THE RURAL AREAS

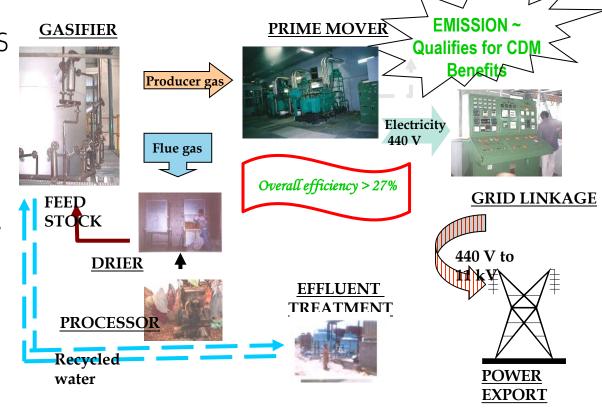
- With Pura being supported through biogas for meeting the critical energy needs of a rural house, (in Ungra). Took an initiative to identify an un-electrified village close to Ungra
 - Approach thermo-chemical process
 - The hamlet Hosahalli not an easy terrain to reach
 - Un-electrified hamlet semi-arid, 45 houses; 220 population;
 - Literacy level <5 %
 - One crop in a year Rain ; remaining man hours spent as laborer
 - Village land of 2 hectares used to grow biomass
- Initially it was envisaged to provide electricity to all the houses (about 45 along with streetlight) using biomass gasification as the technology intervention.
- Issues addressed
 - Necessary permissions to supply electricity to
 - Convincing the villagers that the forest residue will be used for power generation
 - Technology being researched


• Overall performance

- The uptime for electric supply was greater 95%; corresponding uptime of grid electricity in neighboring villages ~60%;
- The quality of electricity at Hosahalli 210V; with grid electricity experience voltage as low as 150 V
- Service fee collection efficiency > 75 %
- Was only Biomass energy village in the entire world

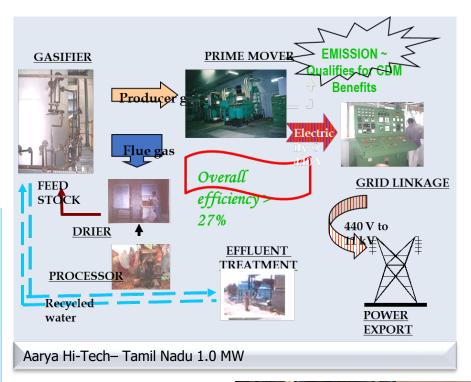

HINDUSTAN PENCILS - A LEADING PENCIL MANUFACTURER OF THE COUNTRY


- > Generates saw dust during the process
- Gasifier designed to operate on briquetted saw dust



CASE STUDY OF COMPLETE SYSTEM COMMERCIAL

- First, single largest IPP based on fixed bed biomass gasification technology
 - ➤ Biomass used coconut shells, prosopsis Juliflora
 - ➤ 5 nos of GTA 1710 G engines
 - ➤ Peak power of 290 kW obtained against 355 kW on NG
 - First time the gas engine connected to grid Over 40000 hrs
 - ➤ Audit report after 5000 and 10000 hrs



Cummins provided guarantee on their engines

GLIMPSES OF THE POWER PROJECTS ..

Gomathy mills – 1MW

GLIMPSES OF SOME THERMAL SYSTEMS

Amrita - Cochin

GASIFICATION SYSTEM IN OVERSEAS - FEW **EXAMPLES**

400 kWe Grid connected - Wila Switzerland

250 kWe, Hiroshima, Japan

1000 kWe, San Francisco, USA

50 kWe Cocodrilo - Cuba

TECHNOLOGY AND SOCIETAL IMPACT

- Novel and unique gasification technology with multi-fuel capability
 - State of the art technology
 - Engine manufacturers across the globe
 - Technology transfer across the globe
- Indigenous producer gas engines established
- Provide technology leadership across the globe
- Replacing 50 Tons of oil daily
 - Annually: Over 0.16 million tons ~ 5000 m INR
 - Over 160 Tons of CO₂ mitigated

THANK YOU